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1 Introduction

Based on all matches from the three previous UEFA European championships, the number of goals a team scores
against a specific opponent is modeled by a joint bivariate Poisson model, including covariate information of both
competing teams. Based on the estimates, the current tournament is simulated 100 000 times to obtain winning
probabilities for all participating national teams.

2 A Bivariate Poisson-Model for Soccer Data

2.1 The Bivariate Poisson Distribution

In the following, we consider random variables Xk, k = 1, 2, 3, which follow independent Poisson distributions with
parameters λk > 0. Then the random variables X = X1 + X3 and Y = X2 + X3 follow a joint bivariate Poisson
distribution, denoted by biPoi(λ1, λ2, λ3), with a joint probability function

PX,Y (x, y) = P (X = x, Y = y)

= exp(−(λ1 + λ2 + λ3))
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The bivariate Poisson distribution allows for dependence between the two random variables X and Y . Marginally
each random variable follows a univariate Poisson distribution with E[X] = λ1 +λ3 and E[Y ] = λ2 +λ3. Moreover,
the dependence of X and Y is expressed by cov(X,Y ) = λ3. If λ3 = 0 holds, the two variables are independent and
the bivariate Poisson distribution reduces to the product of two independent Poisson distributions. The notation
and usage of the bivariate Poisson distribution for modeling soccer data has been described in Karlis and Ntzoufras
(2003).

2.2 Incorporation of Covariate Information

In general, each of the three parameters λk, k = 1, 2, 3 in the joint probability function (1) of the bivariate Poisson
distribution can be modeled in terms of covariates by specifying a suitable response function, similar to classical
generalized linear models (GLMs). Hence, one could use, for example,

λk = exp(ηηηk) ,

with a linear predictor ηηηk = β0k + xTkβββk and response function h(·) = exp(·) in order to guarantee positive Poisson
parameters λk.
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2.3 Re-parametrization of the Bivariate Poisson Distribution

In the context of soccer data a natural way to model the three parameters λk, k = 1, 2, 3, would be to include
the covariate information of the competing teams 1 and 2 in λ1 and λ2, respectively, and some extra information
reflecting the match conditions of the corresponding match in λ3. However, the covariate effects βββk, k = 1, 2, usually
should be the same for both competing teams. Then, one obtains the model representation

λ1 = exp(β0 + xT1 βββ) , λ2 = exp(β0 + xT2 βββ) , (2)

with x1 and x2 denoting the covariates of team 1 and team 2. In contrast, the covariance parameter λ3 could
generally depend on different covariates and effects, i.e.

λ3 = exp(α0 + zTααα) ,

where z could contain parts of the covariates x1 and x2, or their differences or completely new covariates. If instead
in the linear predictors in (2) the differences of the teams’ covariates are used, one obtains

λ1 = exp(β0 + (x1 − x2)Tβββ) , λ2 = exp(β0 + (x2 − x1)Tβββ) ,

or, with x̃ = x1 − x2, the simpler model

λk = exp(β0 ± x̃Tβββ) , k = 1, 2 .

This allows to re-parametrize the bivariate Poisson probability function from (1) in the following way:

PX,Y (x, y) = P (X = x, Y = y)

= exp(−(γ1(γ2 + γ−1
2 ) + λ3))
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with λ1 = γ1γ2, λ2 = γ1
γ2

. The new parameters γ1, γ2 are then given as functions of the following linear predictors:

γ1 = exp(β0) ,

γ2 = exp(x̃Tβββ) ,

with x̃ = x1 − x2 denoting the difference of both teams’ covariates and, as before, λ3 = exp(α0 + zTααα). In the
current analysis, we used the same covariates in the linear predictor of λ3 and set λ3 = exp(α0 + x̃Tααα).

2.4 Estimation

The model was estimated using the R-package gamboostLSS (Hofner et al., 2016; Mayr et al., 2012). With
gamboostLSS the model family of GAMLSS (Generalized Additive Models for Location, Scale and Shape) is com-
bined with the boosting estimation technique. It allows to use multi-parametric distributions in regression models
in combination with implicit variable selection. From a set of potential influence variables (for a detailed description
of all possible variables see Groll and Abedieh, 2013) for γ2 only the covariates bookmakers’ odds (odds for winning
the title before the tournament) and market value were chosen. For λ3, no covariates were chosen.

3 Simulation Results

Based on the final model different simulation studies were applied. For each match, the model is used to calculate
the two-dimensional distribution of the scores of both matches und the result can be drawn randomly from this
distribution. First, the whole tournament was simulated 100 000 times. As the exact match outcomes were known,
the offical UEFA rules for the final standings in the groups could be applied in case of equal numbers of points.

Based on these simulations, for each of the 24 participating teams probabilities to reach the next stage and,
finally, to win the tournament are obtained. These probabilities are displayed in the following table:
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Round of 16 Quarter Finals Semi finals Final European Champion

Germany 99.3 79.5 51.3 34.2 21.1
Spain 95.0 71.2 50.4 33.2 19.8

France 97.6 72.7 49.4 26.9 14.9
England 95.2 68.8 42.6 23.5 12.5
Belgium 94.6 60.8 34.8 20.5 11.0
Portugal 92.4 52.2 27.4 12.7 5.4

Italy 85.9 45.2 22.1 10.3 4.2
Croatia 75.2 36.9 17.8 8.0 3.0
Poland 86.1 42.8 16.0 5.7 1.8
Austria 78.5 33.8 13.3 4.3 1.3

Switzerland 77.8 35.6 13.1 4.3 1.2
Wales 68.2 29.5 10.6 3.2 0.9

Turkey 56.2 21.2 8.3 2.9 0.8
Russia 59.7 23.1 7.5 2.0 0.5

Iceland 62.2 20.6 6.4 1.7 0.4
Ukraine 69.0 24.2 7.2 1.7 0.4

Czech Rep. 41.5 13.0 4.3 1.2 0.3
Slovakia 45.3 14.2 3.7 0.8 0.2
Ireland 42.9 11.4 3.5 0.8 0.1
Sweden 42.4 11.0 3.3 0.8 0.1

Romania 44.4 11.8 2.6 0.5 0.1
Albania 42.4 11.0 2.3 0.4 0.1

Hungary 37.5 8.5 1.8 0.3 0.0
Nor. Ireland 10.9 1.2 0.1 0.0 0.0

According to our proposed model, Germany is the favourite for the title with a winning probability of 21.1%
followed by Spain, France, England and Belgium.

Finally, based on the 100,000 simulations, we also provide the most probable tournament outcome. Here, for each
of the six groups we selected the most probable final group standing regarding the complete order of the places one
to four. The results together with the corresponding probabilities are presented in the following table.

A B C D E F

1 France England Germany Spain Belgium Portugal
2 Switzerland Wales Poland Croatia Italy Austria
3 Romania Russia Ukraine Turkey Ireland Iceland
4 Albania Slovakia Nor. Ireland Czech Rep. Sweden Hungary

21.0% 15.4% 37.7% 18.0% 18.2% 16.5%

Based on the most probable group standings, in the following figure we also provide the most probable course of
the knockout stage. According to the most probable tournament course the German team will win the European
championship. After all, obviously even this ’most probable’ outcome is still extremely unlikely to happen because
of the myriad of possible constellations.
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